DRAFT
AIGER 1.9 and Beyond
July 22, 2011

Armin Biere!, Keijo Heljanko?, and Siert Wieringa?

! Johannes Kepler University, Austria
2 Aalto University, Finland

Abstract. This is a short note on the differences between AIGER for-
mat version 20071012 and the new versions starting with version 1.9.

To ease the transition, the new 1.9 series of AIGER is intended to be syntactically
downward compatible with the previous format, but contains already all the new
features of the upcoming AIGER version 2.0 format. The future AIGER 2.0
version will not be syntactically downward compatible, because it uses a new
binary encoding. However, at least initially, it will not have new features.

For the HWMCC’11 competition we will accept tools that work on the old
format or with the new 1.9 series formats. However, for the new track with
multiple properties and particularly for the liveness track only the new 1.9 series
format is supported.

For the upcoming version 2.0 there will be a new format report. Until it is
available, the format report for version 20071012 and this note serve as language
definition for the 1.9 series of AIGER.

In essence there are five new semantic features:

— reset logic

multiple properties
— invariant constraints
— justice properties

— fairness constraints

We discuss all of them in separate sections, including syntactic extensions
to the old format. Then the API changes are considered followed by the new
witness format.

1 Reset Logic

As AIGER may be used as intermediate language in synthesis, where uninitial-
ized latches occur frequently and should be marked as such, we added support
for reset logic. In the new format, a latch is either initialized to 0 (as in the old
format, now the default), initialized to 1, or it is uninitialized.

Syntactically, the line in the AIGER format which defines the next state
literal of a latch might now optionally contain an additional literal, which is
either '0’, ’1’, or the literal of the latch itself. The former are used for constant
initialization and the latter to define an uninitialized latch.

Without syntactic changes this allows more general reset logic in the fu-
ture. For the current benchmarks, we only support either constant initialized or
uninitialized latches.

2 Multiple Properties

A common request was to allow using and checking multiple properties for the
same model. In practice, a model rarely only has one property and in addition
properties like invariants that hold on the model might help to prove other
properties faster.

The extension is rather straight forward. At those places, where only one
property was allowed, i.e. one output in the old format, multiple properties can
now be listed. The major change is in the witness format, which is explained
further down.

The other minor change is in the first line of the header. As in the previous
format it has the form "aig M I L O A”, but may now be extended with four
more decimal numbers “B C J F”, where B denotes the number of “bad state”
properties, and C, J, F the number of invariant constraints, justice properties,
respectively fairness constraints. Bad state properties are as before negations of
simple safety properties resp. invariants. The latter three are explained below.

The idea is, that the new header is an extension of the old header. For the
extension it is possible to drop a suffix that only contains zeros. As example
consider the following 1-bit counter with one enable input (literal 2). The bad
state property is the latch output (literal 4), which is initialized to 0 and has
10 as next state literal. It flips the latch if the input is 1. Otherwise it does not
change it. This logic is realized by the XOR implemented with 3 AND gates.

aag 511031
2

4 10 0

4
653

842

1097

As in the old format a “bad state” property b is derived from the negation of
a simple AG g safety property, with b = —g and ¢ denotes “good” states. This
benchmark is “satisfiable” if a bad state is reachable.

As described in the report for the old format we have an ASCII and binary
syntax of the format. For the examples we use the ASCII version with header aag.
The difference to the binary format with header aig is as before. In the binary
format the input section (literal 2) and the first literal of the latch definitions
(literal 4) can be dropped. AND gates are binary encoded as before.

In the old format there were no bad state sections, the last 1 in the header
line above. Bad state properties had to be listed as outputs. Thus in the old
format the example would only have a different first line:

aag 51113

3 Invariant Constraints

In the example above we might want to check, whether it is possible to reach a
bad state, in which the latch is 1, without ever enabling the input.

aag 5110311
2
10 0

4
4
3
6 53
842
109 7

This invariant constraint is supposed to hold from the first state until and
including where the bad state is found. In linear temporal logic (LTL) a witness
for such a bad state is a path satisfying the formula ¢ U (¢ A b), where c¢ is the
conjunction of the invariant constraints, and b is one bad state property.

Witnesses for bad state properties are essentially finite paths and can thus
be found with safety property checking algorithms without further translations.

Positively, negating the bad state property, we actually try to prove that the
LTL formula ¢ R (¢ — g) holds on all initialized paths, where g = b (good) is
the negation of the considered bad property. This property can be interpreted
as follows: when ¢ stops to hold it releases (at this very moment) g to hold in
states where ¢ holds.

The stronger (G ¢) A F b, or positively (G ¢) — G g, requires to check that
after a bad state has been reached, without violating the invariant constraints,
it still is possible to extend the path to an infinite path on which ¢ holds all the
time. This might be really complicated, if for instance the constraints restrict
latch values. Then extending the finite path to an infinite path requires to solve
another PSPACE hard problem.

Even though this stronger version is the standard semantics of combining
INVAR sections with safety properties in SMV, we prefer the weaker version,
which is easier to check and has simple (finite path) semantics.

Note that an infinite path might still be considered as a witness of a bad
state property. Actually, only a finite prefix until and including the bad state is
sufficient.

4 Liveness Properties and Fairness Constraints

We assume that the reader is familiar with translations of LTL into generalized
Biichi automata, similar to what the LTL2SMV tool does. The result of such a

translation is a set of fairness constraints, one set of (local) fairness constraints
for each LTL property. We call such a set a “justice” property. A witness for a
justice property is an infinite initialized path, on which each fairness constraint
in the set is satisfied infinitely often.

In AIGER, such a set is represented as a list of literals. In particular, there
might be a list of F fairness constraints, as last section, which is an example of
one global justice property. The justice section contains J numbers, where the
i*" number denotes the number of (local) fairness constraints of the i*" justice
property. After the sizes of all the justice properties, the literals of the first justice
property are listed, followed by the literals of the second justice property etc.

As discussed above, fairness constraints do not apply to bad state properties,
even though both are listed for the same model. In particular, if there are only
bad state properties, but no justice properties, fairness constraints are actually
redundant.

More formally, assume we have B bad state literals by,...,bg, C environ-
ment constraints ci,...,cq, F (global) fairness constraints fi,..., fr and J jus-
tice properties Ji,...,.Jy. The i*" justice property is a set of s; = |.J;| fairness
constraints J; = {ji,...,j. }. A witness for the i*" bad state property b; is an

initialized path of the model satisfying the LTL formula

C
cU (eNb;) with cz/\ck
k=1

This path does not necessarily need to be infinite. A witness for the i*" justice
property is an infinite path which satisfies the following LTL formula

F Si
(Ge) A (A GF fi) A (/\ GF j})
k=1 k=1

Note how the environment constraints are shared among witnesses for all prop-
erties, and also required to hold. This applies both to bad state and justice
properties. However, for bad state properties they do not need to hold forever.
The global fairness constraints in the F section are shared among all justice
properties.

5 API

The library API in ’aiger.h’ is extended with functions to support new features
but the already existing functions do not change their meaning. For the new
features the following functions have been added:

void aiger_add_reset (aiger *, unsigned 1lit, unsigned reset);

void aiger_add_bad (aiger *, unsigned lit, const char *);

void aiger_add_constraint (aiger *, unsigned 1lit, const char *);

void aiger_add_justice (aiger *, unsigned size, unsigned *, const char *);
void aiger_add_fairness (aiger *, unsigned lit, const char *);

There is an additional ’'reset’ field for latches, as well as separate bad’,
‘constraints’, ’justice’ and ’fairmness’ sections. Each section is a list of
‘'aiger_symbol’ entries:

struct aiger_symbol

{
unsigned lit; /* unused for justice */
unsigned next, reset; /* used only for latches */
unsigned size, * lits; /* used only for justice */
char *name;

};

6 Witness Format

The witness format has been adapted to the new features as follows. First the
output file might contain an arbitrary number of witnesses.

A witness starts with either 0, 1, or 2, where 0 means that the property can
not be satisfied, i.e. there is no reachable bad state, respectively an infinite path,
satisfying the justice property and all the invariant constraints. The status 2
denotes unknown, while 1 means that a witness has been found.

The second line contains the properties satisfied by the witness. A bad state
property is referred to with “bi” and a justice property by “ji”, where ¢ ranges
over the bad state respectively justice property indices, which start at 0.

This is the same convention as in the symbol table, which in addition to the
valid entries of the old format might now also contain ‘b’, ‘c’, ‘j” and ‘f’ entries.

There might be uninitialized latches. Therefore it is required that the third
line contains the initial state, represented as a list of 0’ and ’1” ASCII characters.
The following lines contain input vectors as in the old format.

As all properties and constraints might refer to inputs, i.e. they are “Mealy”
outputs, the number of input vectors is the same as the number of states. Thus
a witness contains at least one input vector line.

To separate witnesses and catch early termination of model checkers, in the
process of printing a full witness, we require that each witness is ended with a
’.” character on a separate line. Thus the output format looks like follows

(
{0 | 21> | °2> } <newline> status
({ b | ’c’ } <index>) + <newline> properties
{0 | ’1> | ’x> } * <newline> initial state
({0 |10 | ’x> } * <newline>) + input vector(s)
) J
) *x

Of course, the initial state line and the input vectors should only occur for
status 1 witnesses.

The ’x’ characters denotes a “don’t care” value. For the competition we
require that grounding to arbitrary values will always produce a valid witness.

Since this check is co-NP hard, we will actually only check that grounding them
all to zero produces a valid witness.

Comments start with 'c’ and extend until and including the end of the line.
After filtering them out they are interpreted as new line separators.

For justice properties the state reached after the last input vector has to
occur before. It is not mandatory to specify the loop start. It is calculated by
the simulator.

A valid witness for the first example is as follows:

= = O

7 Acknowledgements

Acknowledgements go to all the supporters of AIGER and the HWMCC. The
new format report version 2.0 will contain a complete list.

